Using Film-Mulched Drip Irrigation to Improve the Irrigation Water Productivity of Cotton in the Tarim River Basin, Central Asia

Author:

Zhu Jianyu12,Chen Yaning1,Li Zhi1,Duan Weili1ORCID,Fang Gonghuan1ORCID,Wang Chuan12ORCID,He Ganchang12ORCID,Wei Wei12

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Climate change has significantly influenced water resource patterns in arid regions. Applying effective water-saving measures to improve irrigation efficiency and evaluate their future water-saving capabilities is crucial for ensuring the sustainable development of irrigation agriculture. Based on the daily meteorological data from 15 global climate models (GCMs) in the sixth phase of the Coupled Model Intercomparison Project (CMIP6), this study used the AquaCrop model to perform high-resolution (0.1° × 0.1°) grid simulations of cotton yields and irrigation requirements. The study also investigated the ability of film-mulched drip irrigation (FMDI) to improve future irrigation efficiency under two shared socio-economic pathways (SSP245 and SSP585) in the Tarim River Basin (TRB), Central Asia, from 2025 to 2100. The results showed that the cotton yield and irrigation water productivity (WPI) in the TRB exhibited an upward trend of 13.82 kg/ha/decade (80.68 kg/ha/decade) and 0.015 kg/m3/decade (0.068 kg/m3/decade), respectively, during the study period. The cotton yield and WPI were higher in the northern, northwestern plains, and northeastern intermountain basin areas, where they reach over 4000 kg/ha and 0.8 kg/m3/decade. However, the cotton yield and WPI were lower in the southwestern part of the study area. Therefore, large-scale cotton production was not recommended there. Furthermore, compared to flood irrigation, the use of FMDI can, on average, improve the WPI by approx. 25% and reduce irrigation water requirements by more than 550 m3/ha. Therefore, using FMDI can save a substantial amount of irrigation water in cotton production, which is beneficial for improving irrigation efficiency and ensuring the future stable production of cotton in the TRB. The research results provide a scientific reference for the efficient utilization and management of water resources for cotton production in the TRB and in similar arid regions elsewhere in the world.

Funder

Tianshan Yingcai Program of the Xinjiang Uygur Autonomous Region

International Cooperation Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference71 articles.

1. IPCC (2021). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models;Ruane;Nat. Food,2021

3. Risk of increased food insecurity under stringent global climate change mitigation policy;Hasegawa;Nat. Clim. Chang.,2018

4. Impact of oceans on climate change in drylands;Guan;Sci. China Earth Sci.,2019

5. Multifaceted characteristics of dryland aridity changes in a warming world;Lian;Nat. Rev. Earth Environ.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3