A Review of the Application and Impact of Drip Irrigation under Plastic Mulch in Agricultural Ecosystems

Author:

Wang Chunyu123ORCID,Li Sien123,Huang Siyu123,Feng Xuemin123

Affiliation:

1. State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China

2. National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China

3. Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China

Abstract

Food security, a crucial issue for the development of humankind, is often severely constrained by water scarcity. As a globally recognized most advanced agricultural water-saving technology, drip irrigation under plastic mulch (DIPM) has played a significant role in grain production. However, a comprehensive review of the dual impacts of this practice in farmland remains lacking. This study has conducted an exhaustive review of DIPM research from 1999 to 2023 and employed CiteSpace software to perform a co-occurrence and clustering analysis of keywords in order to reveal research hotspots and trends. The results show that the attention to DIPM technology has increased annually and reached a peak in 2022. China leads in the number of publications in this field, reflecting its emphasis on agricultural water-saving technologies. This study critically discusses the dual impacts of DIPM on farmland. On the positive side, DIPM can improve soil temperature and moisture, enhance nutrient availability, promote water and nutrient absorption by roots, and increase the crop growth rate and yield while reducing evaporation and nitrogen loss, suppressing weed growth, decreasing herbicide usage, and lowering total greenhouse gas emissions. On the negative side, it will cause pollution from plastic mulch residues, damage the soil structure, have impacts on crop growth, and lead to increased clogging of drip irrigation systems, which will increase agricultural costs and energy consumption, hinder crop growth, hamper soil salinization management, and further reduce the groundwater level. The future development of DIPM technology requires optimization and advancement. Such strategies as mechanized residual-mulch recovery, biodegradable mulch substitution, aerated drip irrigation technology, and alternate irrigation are proposed to address existing issues in farmland triggered by DIPM. This review advocates for the active exploration of farming management practices superior to DIPM for future agricultural development. These practices could lead to higher yields, water–nitrogen efficiency, and lower environmental impact in agricultural development.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3