MHLDet: A Multi-Scale and High-Precision Lightweight Object Detector Based on Large Receptive Field and Attention Mechanism for Remote Sensing Images

Author:

Zhou Liming12ORCID,Zhao Hang12ORCID,Liu Zhehao12ORCID,Cai Kun12ORCID,Liu Yang123ORCID,Zuo Xianyu12ORCID

Affiliation:

1. Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China

2. School of Computer and Information Engineering, Henan University, Kaifeng 475004, China

3. Henan Province Engineering Research Center of Spatial Information Processing and Shenzhen Research Institute, Henan University, Kaifeng 475004, China

Abstract

Object detection in remote sensing images (RSIs) has become crucial in recent years. However, researchers often prioritize detecting small objects, neglecting medium- to large-sized ones. Moreover, detecting objects hidden in shadows is challenging. Additionally, most detectors have extensive parameters, leading to higher hardware costs. To address these issues, this paper proposes a multi-scale and high-precision lightweight object detector named MHLDet. Firstly, we integrated the SimAM attention mechanism into the backbone and constructed a new feature-extraction module called validity-neat feature extract (VNFE). This module captures more feature information while simultaneously reducing the number of parameters. Secondly, we propose an improved spatial pyramid pooling model, named SPPE, to integrate multi-scale feature information better, enhancing the model to detect multi-scale objects. Finally, this paper introduces the convolution aggregation crosslayer (CACL) into the network. This module can reduce the size of the feature map and enhance the ability to fuse context information, thereby obtaining a feature map with more semantic information. We performed evaluation experiments on both the SIMD dataset and the UCAS-AOD dataset. Compared to other methods, our approach achieved the highest detection accuracy. Furthermore, it reduced the number of parameters by 12.7% compared to YOLOv7-Tiny. The experimental results illustrated that our proposed method is more lightweight and exhibits superior detection accuracy compared to other lightweight models.

Funder

the National Basic Research Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3