Detecting Spatial-Temporal Changes of Urban Environment Quality by Remote Sensing-Based Ecological Indices: A Case Study in Panzhihua City, Sichuan Province, China

Author:

Shan YunfengORCID,Dai XiaoaiORCID,Li WeileORCID,Yang ZhichongORCID,Wang Youlin,Qu Ge,Liu Wenxin,Ren Jiashun,Li Cheng,Liang Shuneng,Zeng Binyang

Abstract

Panzhihua City is a typical agricultural-forestry-pastoral and ecologically sensitive city in China. It is also an important ecological defense in the upper Yangtze River. It has abundant mineral resources, including vanadium, titanium, and water supplies. However, ecological and environmental problems emerge due to the excessive development of mining, agriculture, animal husbandry, and other non-natural urban economies. Therefore, a scientific understanding of the spatio-temporal changes of the eco-environment of Panzhihua is critical for environmental protection, city planning, and construction. To objectively evaluate the eco-environmental status of Panzhihua, the remote sensing-based ecological index (RSEI) was first applied to Panzhihua, a typical resource-based city, and its ecological environmental quality (EEQ) was quantitatively assessed from 1990 to 2020. This study explored the effects of mining activities and policies on EEQ and used change detection to reveal the spatial-temporal changes of EEQ in Panzhihua City over the past three decades. In addition, this study also verified the suitability of RSEI for evaluating EEQ in resource-based city using spatial autocorrelation, revealed the spatial heterogeneity of EEQ in Panzhihua City using optimized hot spot analysis, and showed different ecological clustering by hot spot analysis at two scales of urban and mining areas. According to the results: (1) From 1990 to 2020, the general eco-environmental condition of Panzhihua is improving, but there are still regional differences. (2) The Moran’s I value ranges from 0.436 (1990) to 0.700 (2020), indicating that there is autocorrelation in the distribution of eco-environmental quality. (3) At the mine, the mean value of RSEI dropped by 20–40%, and the EEQ decreased significantly due to mining activities. (4) A series of ecological restoration policies can buffer the negative impact of mining activities on the ecosystem, resulting in a slight improvement in the quality of the ecological environment. This study evaluates the EEQ of resource-based city and its spatial-temporal changes using RSEI constructed by the Google Earth Engine (GEE) platform, which can provide theoretical support for ecological and environmental conditions monitoring, development planning, and environmental protection policy-making of a resource-based city.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Sichuan Mineral Resources Research Center

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3