Investigation of Stability and Power Consumption of an AlGaN/GaN Heterostructure Hydrogen Gas Sensor Using Different Bias Conditions

Author:

Choi June-HeangORCID,Kim HyungtakORCID,Sung Hyuk-Kee,Cha Ho-Young

Abstract

A Pd-functionalized hydrogen gas sensor was fabricated on an AlGaN/GaN-on-Si heterostructure platform. The AlGaN layer under the Pd catalyst area was partially recessed by plasma etching, which resulted in a low standby current level enhancing the sensor response. Sensor stability and power consumption depending on operation conditions were carefully investigated using two different bias modes: constant voltage bias mode and constant current bias mode. From the stability point of view, high voltage operation is better than low voltage operation for the constant voltage mode of operation, whereas low current operation is preferred over high current operation for the constant current mode of operation. That is, stable operation with lower standby power consumption can be achieved with the constant current bias operation. The fabricated AlGaN/GaN-on-Si hydrogen sensor exhibited excellent sensing characteristics; a response of 120% with a response time of < 0.4 s at a bias current density of 1 mA/mm at 200 °C. The standby power consumption was only 0.54 W/cm2 for a sensing catalyst area of 100 × 24 μm2.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3