Watching the Beach Steadily Disappearing: The Evolution of Understanding of Retrogressive Breach Failures

Author:

Mastbergen Dick R.ORCID,Beinssen Konrad,Nédélec Yves

Abstract

Retrogressive breach failures or coastal flow slides occur naturally in the shoreface in fine sands near dynamic tidal channels or rivers. They sometimes retrogress into beaches, shoal margins and riverbanks where they can threaten infrastructure and cause severe coastal erosion and flood risk. Ever since the first reports were published in the Netherlands over a century ago, attempts have been made to understand the geo-mechanical mechanism of flow slides. In this paper we have established that events, observed during the active phase, are characterized by a slow but steady retrogression into the shoreline, often continuing for many hours. This can be explained by the breaching mechanism, as will be clarified in this paper. Recently, further evidence has become available in the form of video footage of active events in Australia and elsewhere, often publicly posted on the internet. All these observations justify the new term ‘retrogressive breach failure’ (RBF event). The mechanism has been confirmed in flume tests and in a field experiment. With a better understanding of the geo-mechanical mechanism, current protection methods can be better understood, and new defense strategies can be envisaged. In writing this paper, we hope that the coastal science and engineering communities will better recognize and understand these intriguing natural events.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference67 articles.

1. Field Observations of Retrogressive Breach Failures at two Tidal Inlets in Queensland, Australia;Beinssen;Aust. Geomech.,2014

2. The importance of breaching as a mechanism of subaqueous slope failure in fine sand;Van den Berg;Sedimentology,2002

3. Flow slides in the Netherlands: experience and engineering practice

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3