Breaching and liquefaction in subaqueous retrogressive flow slides

Author:

van den Ham Geeralt A.1ORCID,De Groot Maarten B.1,Mastbergen Dick R.2ORCID,Van den Berg Jan H.3

Affiliation:

1. Department of Geo-engineering, Deltares, Delft, the Netherlands

2. Department of Marine and Coastal Management, Deltares, Delft, the Netherlands

3. Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands

Abstract

Although retrogressive flow slides in subaqueous sandy slopes can be very large and cause substantial damage, the failure mechanisms of such slides are not very clear yet. This study analyses two well-monitored flow slides in a shoal margin in the Western Scheldt estuary in the Netherlands: a natural flow slide that eroded 300 m into the edge of the shoal and an artificially induced flow slide that was triggered by dredging and eroded only 30 m of the shoal margin. Both slides were simulated with a newly developed numerical model that describes the physics of slow retrogressive breaching and the much faster retrogression of statically liquefied fine to medium (silty) sands. The simulations show that the differences in trigger and size can be explained by assuming that in the larger slide both retrogressive breaching and static liquefaction took place, while in the smaller one only breaching occurred. The main contribution of retrogressive liquefaction to the larger slide was the generation of a temporary high-erosive density flow that proved sufficient to create such a high, near-vertical slope that the breaching process could continue over a long period and distance. It is therefore likely that both breaching and static liquefaction play a role in large natural flow slides.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3