Grid Type and Turbulence Model Influence on Propeller Characteristics Prediction

Author:

Sikirica AnteORCID,Čarija Zoran,Kranjčević LadoORCID,Lučin IvanaORCID

Abstract

This paper evaluates the applicability of the hexahedral block structured grids for marine propeller performance predictions. Hydrodynamic characteristics for Potsdam Propeller Test Case (PPTC), namely thrust and torque coefficients, were determined using numerical simulations in two commercial solvers: Ansys Fluent and STAR-CCM+. Results were attained for hexahedral and tetrahedral hybrid grids equivalent in terms of cell count and quality, and compared to the experimental results. Furthermore, accuracy of Realizable k- ϵ and SST k- ω turbulent models when analyzing marine propeller performance was investigated. Finally, performance characteristics were assessed in cavitating flow conditions for a single advance ratio using Zwart–Gerber–Belamri and Schnerr and Sauer models. The resulting cavitation pattern was compared to cavity extents and shape noted during measurements. The results suggest that hexa and hybrid grids, in certain range of advance ratios, do provide similar results; however, for low and high ratios, structured grids in conjunction with Realizable k- ϵ model can achieve more accurate results.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3