The comparative transient prediction on hydrodynamic characteristics and flow field properties of pump-jets with accelerating and decelerating ducts

Author:

Zhou Yunkai,Yuan Jianping,Cavazzini Giovanna,Fu Yanxia,Gao Quanlin

Abstract

AbstractPump-jet holds a pivotal position in various marine applications, underscoring the need for comprehending their transient behavior for the purpose of design enhancement and performance refinement. This paper employs Reynolds-averaged Navier–Stokes equations method in conjunction with Detached Eddy Simulation model. The study delves into the ramifications of accelerating and decelerating ducts, distinguished by camber f and attack angles α, on transient hydrodynamic characteristics. The hydrodynamic characteristics are investigated numerically, after the validation of the numerical methodology by comparing simulation outcomes against experimental results. Subsequently, the study delves into propulsion characteristics, followed by an exploration of time-domain and frequency-domain data transformed through fast Fourier transform to analyze thrust fluctuations and pulsating pressures. Additionally, a detailed examination of pressure distribution and velocity field is provided, aiming to dissect the mechanisms through the variations in f and α influence the flow field. Findings suggest that the outlet velocity of accelerating ducts significantly surpasses the inlet velocity, a behavior contrasted by decelerating ducts. Notably, the patterns of accelerating and decelerating ducts resulting from alterations in f exhibit consistent characteristics with those brought about by changes in α. However, several opposite characteristics surface in transient flow field due to the distinct modifications in the duct profile. Furthermore, by considering vorticity magnitude distribution and vortices, a comparative analysis elucidates the effects of varying f and α on rotor and stator trailing vortices. This contributes to understanding the flow instability mechanism under differing duct configurations. It is evident that changes in f and α exert significant influence on both performance and flow field.

Funder

China Sponsorship Council

Innovation Project for Postgraduates of Jiangsu Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3