Long Distance Moving Vehicle Tracking with a Multirotor Based on IMM-Directional Track Association

Author:

Yeom SeokwonORCID

Abstract

The multirotor has the capability to capture distant objects. Because the computing resources of the multirotor are limited, efficiency is an important factor to consider. In this paper, multiple target tracking with a multirotor at a long distance (~400 m) is addressed; the interacting multiple model (IMM) estimator combined with the directional track-to-track association (abbreviated as track association) is proposed. The previous work of the Kalman estimator with the track association approach is extended to the IMM estimator with the directional track association. The IMM estimator can handle multiple targets with various maneuvers. The track association scheme is modified in consideration of the direction of the target movement. The overall system is composed of moving object detection for measurement generation and multiple target tracking for state estimation. The moving object detection consists of frame-to-frame subtraction of three-color layers and thresholding, morphological operation, and false alarm removing based on the object size and shape properties. The centroid of the detected object is input into the next tracking stage. The track is initialized using the difference between two nearest points measured in consecutive frames. The measurement nearest to the state prediction is used to update the state of the target for measurement-to-track association. The directional track association tests both the hypothesis and the maximum deviation between the displacement and directions of two tracks followed by track selection, fusion, and termination. In the experiment, a multirotor flying at an altitude of 400 m captured 55 moving vehicles around a highway interchange for about 20 s. The tracking performance is evaluated for the IMMs using constant velocity (CV) and constant acceleration (CA) motion models. The IMM-CA with the directional track association scheme outperforms other methods with an average total track life of 91.7% and an average mean track life of 84.2%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3