Enhancing the Reliability of Communication between Vehicle and Everything (V2X) Based on Deep Learning for Providing Efficient Road Traffic Information

Author:

Osman Radwa AhmedORCID,Saleh Sherine NagyORCID,Saleh Yasmine N. M.,Elagamy Mazen Nabil

Abstract

Developing efficient communication between vehicles and everything (V2X) is a challenging task, mainly due to the characteristics of vehicular networks, which include rapid topology changes, large-scale sizes, and frequent link disconnections. This article proposes a deep learning model to enhance V2X communication. Various channel conditions such as interference, channel noise, and path loss affect the communication between a vehicle (V) and everything (X). Thus, the proposed model aims to determine the required optimum interference power to enhance connectivity, comply with the quality of service (QoS) constraints, and improve the communication link reliability. The proposed model fulfills the best QoS in terms of four metrics, namely, achievable data rate (Rb), packet delivery ratio (PDR), packet loss rate (PLR), and average end-to-end delay (E2E). The factors to be considered are the distribution and density of vehicles, average length, and minimum safety distance between vehicles. A mathematical formulation of the optimum required interference power is presented to achieve the given objectives as a constrained optimization problem, and accordingly, the proposed deep learning model is trained. The obtained results show the ability of the proposed model to enhance the connectivity between V2X for improving road traffic information efficiency and increasing road traffic safety.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3