Abstract
Developing efficient communication between vehicles and everything (V2X) is a challenging task, mainly due to the characteristics of vehicular networks, which include rapid topology changes, large-scale sizes, and frequent link disconnections. This article proposes a deep learning model to enhance V2X communication. Various channel conditions such as interference, channel noise, and path loss affect the communication between a vehicle (V) and everything (X). Thus, the proposed model aims to determine the required optimum interference power to enhance connectivity, comply with the quality of service (QoS) constraints, and improve the communication link reliability. The proposed model fulfills the best QoS in terms of four metrics, namely, achievable data rate (Rb), packet delivery ratio (PDR), packet loss rate (PLR), and average end-to-end delay (E2E). The factors to be considered are the distribution and density of vehicles, average length, and minimum safety distance between vehicles. A mathematical formulation of the optimum required interference power is presented to achieve the given objectives as a constrained optimization problem, and accordingly, the proposed deep learning model is trained. The obtained results show the ability of the proposed model to enhance the connectivity between V2X for improving road traffic information efficiency and increasing road traffic safety.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献