Classifying Multivariate Signals in Rolling Bearing Fault Detection Using Adaptive Wide-Kernel CNNs

Author:

van den Hoogen JurgenORCID,Bloemheuvel Stefan,Atzmueller MartinORCID

Abstract

With the developments in improved computation power and the vast amount of (automatic) data collection, industry has become more data-driven. These data-driven approaches for monitoring processes and machinery require different modeling methods focusing on automated learning and deployment. In this context, deep learning provides possibilities for industrial diagnostics to achieve improved performance and efficiency. These deep learning applications can be used to automatically extract features during training, eliminating time-consuming feature engineering and prior understanding of sophisticated (signal) processing techniques. This paper extends on previous work, introducing one-dimensional (1D) CNN architectures that utilize an adaptive wide-kernel layer to improve classification of multivariate signals, e.g., time series classification in fault detection and condition monitoring context. We used multiple prominent benchmark datasets for rolling bearing fault detection to determine the performance of the proposed wide-kernel CNN architectures in different settings. For example, distinctive experimental conditions were tested with deviating amounts of training data. We shed light on the performance of these models compared to traditional machine learning applications and explain different approaches to handle multivariate signals with deep learning. Our proposed models show promising results for classifying different fault conditions of rolling bearing elements and their respective machine condition, while using a fairly straightforward 1D CNN architecture with minimal data preprocessing. Thus, using a 1D CNN with an adaptive wide-kernel layer seems well-suited for fault detection and condition monitoring. In addition, this paper clearly indicates the high potential performance of deep learning compared to traditional machine learning, particularly in complex multivariate and multi-class classification tasks.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stay Tuned! Analysing Hyperparameters of a Wide-Kernel Architecture for Industrial Faults;2024 IEEE Conference on Artificial Intelligence (CAI);2024-06-25

2. Data-Hungry Fault Detection Algorithms Can Try Transfer Learning for Starters;2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW);2024-05-13

3. Spatial-temporal graph convolutional networks (STGCN) based method for localizing acoustic emission sources in composite panels;Composite Structures;2023-11

4. Hyperparameter Analysis of Wide-Kernel CNN Architectures in Industrial Fault Detection - An Exploratory Study;2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA);2023-10-09

5. Hyperparameter analysis of wide-kernel CNN architectures in industrial fault detection: an exploratory study;International Journal of Data Science and Analytics;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3