Hyperparameter analysis of wide-kernel CNN architectures in industrial fault detection: an exploratory study

Author:

van den Hoogen Jurgen,Hudson Dan,Bloemheuvel Stefan,Atzmueller Martin

Abstract

AbstractIndustrial fault detection has become more data-driven due to advancements in automated data analysis using deep learning. Such methods make it possible to extract useful features, e. g., from time series data retrieved from sensors, which is typically of complex nature. This allows for effective fault detection and prognostics that boost the efficiency and productivity of industrial equipment. This work explores the influence of a variety of architectural hyperparameters on the performance of one-dimensional convolutional neural networks (CNN). Using a multi-method approach, this paper focuses specifically on wide-kernel CNN models for industrial fault detection, that have proven to perform well for tasks such as classifying vibration signals retrieved from sensors. By varying hyperparameters such as the kernel size, stride and number of filters, an extensive hyperparameter space search was conducted; to identify optimal settings, we collected a total of 12,960 different combinations on three datasets into a model hyperparameter dataset, with their respective performance on the underlying fault detection task. Afterwards, this dataset was explored with follow-up analysis including statistical, feature, pattern and hyperparameter impact analysis. We find that although performance varies substantially depending on hyperparameter choices, there is no single simple strategy to optimise performance across the three datasets. However, an optimal setting in terms of performance can be found in the number of filters used in the later layers of the architecture for all datasets. Furthermore, hyperparameter importance differs across and within the datasets, and we found nonlinear relationships between hyperparameter settings and performance. Our analysis highlights key considerations when applying a wide-kernel CNN architecture to new data within the field of industrial fault detection. This supports practitioners who wish to apply and train state-of-the-art convolutional learning methods to apply to similar fault detection settings, e. g., vibration data arising from new combinations of sensors and/or machinery in the context of bearing faults.

Funder

Universität Osnabrück

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stay Tuned! Analysing Hyperparameters of a Wide-Kernel Architecture for Industrial Faults;2024 IEEE Conference on Artificial Intelligence (CAI);2024-06-25

2. Hyperparameter Analysis of Wide-Kernel CNN Architectures in Industrial Fault Detection - An Exploratory Study;2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA);2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3