Development of a Proton-Frequency-Transparent Birdcage Radiofrequency Coil for In Vivo 13C MRS/MRSI Study in a 3.0 T MRI System

Author:

Yoon Jun-SikORCID,Kim Jong-Min,Chung Han-JaeORCID,Jeong You-Jin,Jeong Gwang-Woo,Park Ilwoo,Kim Gwang-Won,Oh Chang-HyunORCID

Abstract

A proton-frequency-transparent (PFT) birdcage RF coil that contains carbon-proton switching circuits (CPSCs) is presented to acquire 13C MR signals, which, in turn, enable 1H imaging with existing 1H RF coils without being affected by a transparent 13C birdcage RF coil. CPSCs were installed in the PFT 13C birdcage RF coil to cut the RF coil circuits during 1H MR imaging. Finite-difference time-domain (FDTD) electromagnetic (EM) simulations were performed to verify the performance of the proposed CPSCs. The performance of the PFT 13C birdcage RF coil with CPSCs was verified via phantom and in vivo MR studies. In the phantom MR studies, 1H MR images and 13C MR spectra were acquired and compared with each other using the 13C birdcage RF coil with and without the CPSCs. For the in vivo MR studies, hyperpolarized 13C cardiac MRS and MRSI of swine were performed. The proposed PFT 13C birdcage RF coil with CPSCs led to a percent image uniformity (PIU) reduction of 1.53% in the proton MR images when compared with the case without it. FDTD EM simulations revealed PIU reduction of 0.06% under the same conditions as the phantom MR studies. Furthermore, an SNR reduction of 5.5% was observed at 13C MR spectra of corn-oil phantom using the PFT 13C birdcage RF coil with CPSCs compared with that of the 13C birdcage RF coil without CPSCs. Utilizing the PFT 13C birdcage RF coil, 13C-enriched compounds were successfully acquired via in vivo hyperpolarized 13C MRS/MRSI experiments. In conclusion, the applicability and utility of the proposed 16-leg low-pass PFT 13C birdcage RF coil with CPSCs were verified via 1H MR imaging and hyperpolarized 13C MRS/MRSI studies using a 3.0 T MRI system.

Funder

Ministry of Trade, Industry and Energy

Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3