A Novel Shadow Removal Method Based upon Color Transfer and Color Tuning in UAV Imaging

Author:

Alvarado-Robles GilbertoORCID,Solís-Muñoz Francisco J.ORCID,Garduño-Ramón Marco A.ORCID,Osornio-Ríos Roque A.ORCID,Morales-Hernández Luis A.ORCID

Abstract

Through the increasing use of unmanned aerial vehicles as remote sensing tools, shadows become evident in aerial imaging; this fact, alongside the higher spatial resolution obtained by high-resolution mounted cameras, presents a challenging issue when performing different image processing tasks related to urban areas monitoring. Accordingly, the state-of-the-art reported works can correct the shadow regions, but the heterogeneity between the corrected shadow and non-shadow areas is still evident and especially noticeable in concrete and asphalt regions. The present work introduces a local color transfer methodology to shadow removal which is based on the CIE L*a*b (Lightness, a and b) color space that considers chromatic differences in urban regions, and it is followed by a color tuning using the HSV color space. The quantitative comparison was executed by using the shadow standard deviation index (SSDI), where the proposed work provided low values that improve up to 19 units regarding other tested methods. The qualitative comparison was visually realized and proved that the proposed method enhances the color correspondence without losing texture information. Quantitative and qualitative results validate the results of color correction and texture preservation accuracy of the proposed method against other published methodologies.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Color Transfer for Images: A Survey;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-11-30

2. Intelligent road recognition system for an autonomous vehicle;2022 20th International Conference on Emerging eLearning Technologies and Applications (ICETA);2022-10-20

3. Shadow Compensation from UAV Images Based on Texture-Preserving Local Color Transfer;Remote Sensing;2022-10-06

4. Shadow Removal from UAV Images Based on Color and Texture Equalization Compensation of Local Homogeneous Regions;Remote Sensing;2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3