Author:
Liu Xiaoxia,Yang Fengbao,Wei Hong,Gao Min
Abstract
Due to imaging and lighting directions, shadows are inevitably formed in unmanned aerial vehicle (UAV) images. This causes shadowed regions with missed and occluded information, such as color and texture details. Shadow detection and compensation from remote sensing images is essential for recovering the missed information contained in these images. Current methods are mainly aimed at processing shadows with simple scenes. For UAV remote sensing images with a complex background and multiple shadows, problems inevitably occur, such as color distortion or texture information loss in the shadow compensation result. In this paper, we propose a novel shadow removal algorithm from UAV remote sensing images based on color and texture equalization compensation of local homogeneous regions. Firstly, the UAV imagery is split into blocks by selecting the size of the sliding window. The shadow was enhanced by a new shadow detection index (SDI) and threshold segmentation was applied to obtain the shadow mask. Then, the homogeneous regions are extracted with LiDAR intensity and elevation information. Finally, the information of the non-shadow objects of the homogeneous regions is used to restore the missed information in the shadow objects of the regions. The results revealed that the average overall accuracy of shadow detection is 98.23% and the average F1 score is 95.84%. The average color difference is 1.891, the average shadow standard deviation index is 15.419, and the average gradient similarity is 0.726. The results have shown that the proposed method performs well in both subjective and objective evaluations.
Subject
General Earth and Planetary Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献