Abstract
Soft switching for both primary and secondary side devices is available by using LLC converters. This resonant converter is an ideal candidate for today’s high frequency, high efficiency, and high power density applications like adapters, Uninterrupted Power Supplies (UPS), Solid State Transformers (SST), electric vehicle battery chargers, renewable energy systems, servers, and telecom systems. Using Gallium-Nitride (GaN)-based power switches in this converter merits more and more switching frequency, power density, and efficiency. Therefore, the present paper focused on GaN-based LLC resonant converters. The converter structure, operation regions, design steps, and drive system are described precisely. Then its losses are discussed, and the magnets and inductance characteristics are investigated. After that, various interleaved topologies, as a solution to improve power density and decrease current ripples, have been discussed. Also, some challenges and concerns related to GaN-based LLC converters have been reviewed. Commercially available power transistors based on various technologies, i.e., GaN HEMT, Silicon (Si) MOSFET, and Silicon Carbide (SiC) have been compared. Finally, the LLC resonant converter has been simulated by taking advantage of LTspice and GaN HEMT merits, as compared with Si MOSFETs.
Funder
Ministry of University and Research
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference158 articles.
1. Designing an LLC Resonant Half-Bridge Power Converter;Huang,2010
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献