An Improved VGG16 Model for Pneumonia Image Classification

Author:

Jiang Zhi-Peng,Liu Yi-Yang,Shao Zhen-En,Huang Ko-WeiORCID

Abstract

Image recognition has been applied to many fields, but it is relatively rarely applied to medical images. Recent significant deep learning progress for image recognition has raised strong research interest in medical image recognition. First of all, we found the prediction result using the VGG16 model on failed pneumonia X-ray images. Thus, this paper proposes IVGG13 (Improved Visual Geometry Group-13), a modified VGG16 model for classification pneumonia X-rays images. Open-source thoracic X-ray images acquired from the Kaggle platform were employed for pneumonia recognition, but only a few data were obtained, and datasets were unbalanced after classification, either of which can result in extremely poor recognition from trained neural network models. Therefore, we applied augmentation pre-processing to compensate for low data volume and poorly balanced datasets. The original datasets without data augmentation were trained using the proposed and some well-known convolutional neural networks, such as LeNet AlexNet, GoogLeNet and VGG16. In the experimental results, the recognition rates and other evaluation criteria, such as precision, recall and f-measure, were evaluated for each model. This process was repeated for augmented and balanced datasets, with greatly improved metrics such as precision, recall and F1-measure. The proposed IVGG13 model produced superior outcomes with the F1-measure compared with the current best practice convolutional neural networks for medical image recognition, confirming data augmentation effectively improved model accuracy.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3