Transfer Learning-Based Steering Angle Prediction and Control with Fuzzy Signatures-Enhanced Fuzzy Systems for Autonomous Vehicles

Author:

Karadeniz Ahmet Mehmet1ORCID,Ballagi Áron2ORCID,Kóczy László T.3ORCID

Affiliation:

1. Doctoral School of Multidisciplinary Engineering Sciences, Széchenyi István University, 9026 Györ, Hungary

2. Department of Automation and Mechatronics, Széchenyi István University, 9026 Györ, Hungary

3. Department of Informatics, Széchenyi István University, 9026 Györ, Hungary

Abstract

This research introduces an innovative approach for End-to-End steering angle prediction and its control in electric power steering (EPS) systems. The methodology integrates transfer learning-based computer vision techniques for prediction and control with fuzzy signatures-enhanced fuzzy systems. Fuzzy signatures are unique multidimensional data structures that represent data symbolically. This enhancement enables the fuzzy systems to effectively manage the inherent imprecision and uncertainty in various driving scenarios. The ultimate goal of this work is to assess the efficiency and performance of this combined approach by highlighting the pivotal role of steering angle prediction and control in the field of autonomous driving systems. Specifically, within EPS systems, the control of the motor directly influences the vehicle’s path and maneuverability. A significant breakthrough of this study is the successful application of transfer learning-based computer vision techniques to extract respective visual data without the need for large datasets. This represents an advancement in reducing the extensive data collection and computational load typically required. The findings of this research reveal the potential of this approach within EPS systems, with an MSE score of 0.0386 against 0.0476, by outperforming the existing NVIDIA model. This result provides a 22.63% better Mean Squared Error (MSE) score than NVIDIA’s model. The proposed model also showed better performance compared with all other three references found in the literature. Furthermore, we identify potential areas for refinement, such as decreasing model loss and simplifying the complex decision model of fuzzy systems, which can represent the symmetry and asymmetry of human decision-making systems. This study, therefore, contributes significantly to the ongoing evolution of autonomous driving systems.

Funder

Publications Support Program by the Strategic Ranking Committee and the University Library and Archives (SZEEKL) of Széchenyi István University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3