Controllability of Fractional-Order Particle Swarm Optimizer and Its Application in the Classification of Heart Disease

Author:

Chou Fu-I,Huang Tian-HsiangORCID,Yang Po-Yuan,Lin Chin-Hsuan,Lin Tzu-Chao,Ho Wen-HsienORCID,Chou Jyh-Horng

Abstract

This study proposes a method to improve fractional-order particle swarm optimizer to overcome the shortcomings of traditional swarm algorithms, such as low search accuracy in a high-dimensional space, falling into local minimums, and nonrobust results. In natural phenomena, our controllable fractional-order particle swarm optimizer can explore search spaces in detail to obtain high resolutions. Moreover, the proposed algorithm is memorable, i.e., position updates focus on the particle position of previous and last generations, rendering it conservative when updating the position, and obtained results are robust. For verifying the algorithm’s effectiveness, 11 test functions compare the average value, overall best value, and standard deviation of the controllable fractional-order particle swarm optimizer and controllable particle swarm optimizer; experimental results show that the stability of the former is better than the latter. Furthermore, the solution position found by the controllable fractional-order particle swarm optimizer is more reliable. Therefore, the improved method proposed herein is effective. Moreover, this research describes how a heart disease prediction application uses the optimizer we proposed to optimize XGBoost hyperparameters with custom target values. The final verification of the obtained prediction model is effective and reliable, which shows the controllability of our proposed fractional-order particle swarm optimizer.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3