Optimizing Economic Dispatch with Renewable Energy and Natural Gas Using Fractional-Order Fish Migration Algorithm

Author:

Aldosary Abdallah1ORCID

Affiliation:

1. Computer Engineering Department, College of Engineering, Prince Sattam bin Abdulaziz University, Wadi Addwasir 11991, Ar Riyadh, Saudi Arabia

Abstract

This work presents a model for solving the Economic-Environmental Dispatch (EED) challenge, which addresses the integration of thermal, renewable energy schemes, and natural gas (NG) units, that consider both toxin emission and fuel costs as its primary objectives. Three cases are examined using the IEEE 30-bus system, where thermal units (TUs) are replaced with NGs to minimize toxin emissions and fuel costs. The system constraints include equality and inequality conditions. A detailed modeling of NGs is performed, which also incorporates the pressure pipelines and the flow velocity of gas as procedure limitations. To obtain Pareto optimal solutions for fuel costs and emissions, three optimization algorithms, namely Fractional-Order Fish Migration Optimization (FOFMO), Coati Optimization Algorithm (COA), and Non-Dominated Sorting Genetic Algorithm (NSGA-II) are employed. Three cases are investigated to validate the effectiveness of the proposed model when applied to the IEEE 30-bus system with the integration of renewable energy sources (RESs) and natural gas units. The results from Case III, where NGs are installed in place of two thermal units (TUs), demonstrate that the economic dispatching approach presented in this study significantly reduces emission levels to 0.4232 t/h and achieves a lower fuel cost of 796.478 USD/MWh. Furthermore, the findings indicate that FOFMO outperforms COA and NSGA-II in effectively addressing the EED problem.

Funder

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3