Coal and Gangue Recognition Method Based on Local Texture Classification Network for Robot Picking

Author:

Xie Yuting,Chi XiaoweiORCID,Li Haiyuan,Wang Fuwen,Yan Lutao,Zhang Bin,Zhang Qinjian

Abstract

Coal gangue is a kind of industrial waste in the coal mine preparation process. Compared to conventional manual or machine-based separation technology, vision-based methods and robotic grasping are superior in cost and maintenance. However, the existing methods may have a poor recognition accuracy problem in diverse environments since coals and gangues’ apparent features can be unreliable. This paper analyzes the current methods and proposes a vision-based coal and gangue recognition model LTC-Net for separation systems. The preprocessed full-scale images are divided into n × n local texture images since coals and gangues differ more on a smaller scale, enabling the model to overcome the influence of characteristics that tend to change with the environment. A VGG16-based model is trained to classify the local texture images through a voting classifier. Prediction is given by a threshold. Experiments based on multi-environment datasets show higher accuracy and stability of our method compared to existing methods. The effect of n and t is also discussed.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference23 articles.

1. Coal-Gangue Mixture Degree Recognition Using Different Illuminant Method in Underground Coal Mining;Zhang,2019

2. A novel automated separator based on dual energy gamma-rays transmission;Xu;Meas. Sci. Technol.,2000

3. A streamlined life cycle assessment of a coal-fired power plant: the South African case study

4. Vibration Test of Single Coal Gangue Particle Directly Impacting the Metal Plate and the Study of Coal Gangue Recognition Based on Vibration Signal and Stacking Integration

5. A New Method for Removing Organic Contaminants of Gangue from the Coal Output;Baic;Rocz. Ochr. Srodowiska,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3