Abstract
AbstractDisposing of coal gangue and fly-ash on the surface is a risky method with tremendous potential catastrophic consequences for the environment. Backfill mining is a promising practice for turning those hazardous wastes into functional backfill materials. Unfortunately, how to efficiently deliver the slurry to the desired places remains under-researched. To address this issue, the computational fluid dynamics software Fluent was used in the current study in addition to a laboratory rheological test to simulate the impact of various parameters on the evolution of pressure at a particular section of the pipeline. Furthermore, the response surface method was employed to investigate how the various components and their corresponding influencing weights interact to affect the pressure drop. This study demonstrates that the pressure drop of the slurry is highly influenced by slurry concentration, speed, and pipe diameter. While conveying speed is the main component in the bend section, pipe diameter takes over in the horizontal and vertical pipe sections.
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献