Multi-criteria comparative analysis of the pressure drop on coal gangue fly-ash slurry at different parts along an L-shaped pipeline

Author:

Wang Defeng,Jiao Dengwu,Cheng Zhanbo,Shi Qingwen,Mischo HelmutORCID

Abstract

AbstractDisposing of coal gangue and fly-ash on the surface is a risky method with tremendous potential catastrophic consequences for the environment. Backfill mining is a promising practice for turning those hazardous wastes into functional backfill materials. Unfortunately, how to efficiently deliver the slurry to the desired places remains under-researched. To address this issue, the computational fluid dynamics software Fluent was used in the current study in addition to a laboratory rheological test to simulate the impact of various parameters on the evolution of pressure at a particular section of the pipeline. Furthermore, the response surface method was employed to investigate how the various components and their corresponding influencing weights interact to affect the pressure drop. This study demonstrates that the pressure drop of the slurry is highly influenced by slurry concentration, speed, and pipe diameter. While conveying speed is the main component in the bend section, pipe diameter takes over in the horizontal and vertical pipe sections.

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3