Functional Effects of Permeability on Oldroyd-B Fluid under Magnetization: A Comparison of Slipping and Non-Slipping Solutions

Author:

Riaz Muhammad BilalORCID,Awrejcewicz JanORCID,Rehman Aziz Ur

Abstract

In this article, the impact of Newtonian heating in addition to slip effects was critically examined on the unsteady magnetohydrodynamic (MHD) flow of an Oldroyd-B fluid near an infinitely vertical plate. The functional effects such as the retardation and relaxation of materials can be estimated for magnetized permeability based on the relative decrease or increase during magnetization. From this perspective, a new mathematical model was formulated based on non-slippage and slippage postulates for the Oldroyd-B fluid with magnetized permeability. The heat transfer induction was also examined through a non-fractional developed mathematical model for the Oldroyd-B fluid. The exact solution expressions for non-dimensional equations of velocity and temperature were explored by employing Laplace integral transformation under slipping boundary conditions under Newtonian heating. The heat transfer rate was estimated through physical interpretation by considering the limits on the solutions induced by the Nusselt number. To comprehensively discuss the dynamics of the considered problem, the physical impacts of different parameters were studied and reverberations were graphically highlighted and deliberated. Furthermore, in order to validate the results, two limiting models, namely the Maxwell model and the second grade model, were used to compare the relevant flow characteristics. Additionally, in order to perform the parametric analysis, the graphical representation was portrayed for non-slipping and slipping solutions for velocity and temperature.

Funder

Jan AwrejceWicz

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3