Memory Effects in the Magnetohydrodynamic Axial Symmetric Flows of Oldroyd-B Fluids in a Porous Annular Channel

Author:

Fetecau Constantin1ORCID,Vieru Dumitru2ORCID,Eva Lucian34,Forna Norina Consuela15

Affiliation:

1. Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania

2. Department of Theoretical Mechanics, Technical University of Iasi, 700050 Iasi, Romania

3. Emergency Hospital “Prof. Dr. Nicolae Oblu”, 2 Ateneului Street, 700309 Iasi, Romania

4. Faculty of Medicine, Apollonia University of Iasi, 11 Pacurari Street, 700511 Iasi, Romania

5. Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania

Abstract

In this article, we analytically investigate the isothermal magnetohydrodynamic axial symmetric flows of ordinary and fractional incompressible Oldroyd-B fluids through a porous medium in an annular channel. The fluid’s motion is generated by an outer cylinder, which moves along its symmetry axis with an arbitrary time-dependent velocity Vh(t). Closed-form expressions are established for the dimensionless velocity fields of both kinds of fluids, generating exact solutions for any motion of this type. To illustrate the concept, two particular cases are considered, and the velocity fields corresponding to the flow induced by the outer cylinder are presented in simple forms, with the results validated graphically. The motion of fractional and ordinary fluids becomes steady over time, and their corresponding velocities are presented as the sum of their steady and transient components. Moreover, the steady components of these velocities are identical. The influence of magnetic fields and porous media on the flow of fractional fluids is graphically depicted and discussed. It was found that a steady state is reached earlier in the presence of a magnetic field and later in the presence of a porous medium. Moreover, this state is obtained earlier in fractional fluids compared with ordinary fluids.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3