Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics

Author:

Koziel Slawomir,Pietrenko-Dabrowska AnnaORCID

Abstract

Design of antennas for the Internet of Things (IoT) applications requires taking into account several performance figures, both electrical (e.g., impedance matching) and field (gain, radiation pattern), but also physical constraints, primarily concerning size limitation. Fulfillment of stringent specifications necessitates the development of topologically complex structures described by a large number of geometry parameters that need tuning. Conventional optimization procedures are typically too expensive when the antenna is evaluated using high-fidelity electromagnetic (EM) analysis, otherwise required to ensure accuracy. This paper proposes a novel surrogate-assisted optimization algorithm for computationally efficient design optimization of antenna structures. In the paper, the optimization of antenna input characteristic is presented, specifically, minimization of the antenna reflection coefficient in a given bandwidth. Our methodology involves variable-fidelity EM simulations as well as a dedicated procedure to reduce the cost of estimating the antenna response gradients. The latter is based on monitoring the variations of the antenna response sensitivities along the optimization path. The procedure suppresses the finite-differentiation-based sensitivity updates for variables that exhibit stable gradient behavior. The proposed algorithm is validated using three compact wideband antennas and demonstrated to outperform both the conventional trust region algorithm and the pattern search procedure, as well as surrogate-based procedures while retaining acceptable design quality.

Funder

Icelandic Centre for Research

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3