Abstract
Having knowledge about the states of a system is an important component in most control systems. However, an exact measurement of the states cannot always be provided because it is either not technically possible or only possible with a significant effort. Therefore, state estimation plays an important role in control applications. The well-known and widely used Kalman filter is often employed for this purpose. This paper describes the implementation of nonlinear Kalman filter algorithms, the extended and the unscented Kalman filter with square-rooting, in the programming language C, that are suitable for the use on embedded systems. The implementations deal with single or double precision data types depending on the application. The newly implemented filters are demonstrated in the context of semi-active vehicle damper control and the estimation of the tire–road friction coefficient as application examples, providing real-time capability. Their per-formances were evaluated in tests on an electronic control unit and a rapid-prototyping platform.
Funder
German Federal Ministry of Education and Research
Subject
Computer Networks and Communications,Human-Computer Interaction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Characterizing Runtime Performance Variation in Error Detection by Duplicating Instructions;2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE);2023-10-09