A Novel Dynamic Software-Defined Networking Approach to Neutralize Traffic Burst

Author:

Sharma Aakanksha12,Balasubramanian Venki13ORCID,Kamruzzaman Joarder13ORCID

Affiliation:

1. Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia

2. Melbourne Institute of Technology (MIT), Melbourne, VIC 3000, Australia

3. Centre for Smart Analytics (CSA), Federation University Australia, Ballarat, VIC 3350, Australia

Abstract

Software-defined networks (SDN) has a holistic view of the network. It is highly suitable for handling dynamic loads in the traditional network with a minimal update in the network infrastructure. However, the standard SDN architecture control plane has been designed for single or multiple distributed SDN controllers facing severe bottleneck issues. Our initial research created a reference model for the traditional network, using the standard SDN (referred to as SDN hereafter) in a network simulator called NetSim. Based on the network traffic, the reference models consisted of light, modest and heavy networks depending on the number of connected IoT devices. Furthermore, a priority scheduling and congestion control algorithm is proposed in the standard SDN, named extended SDN (eSDN), which minimises congestion and performs better than the standard SDN. However, the enhancement was suitable only for the small-scale network because, in a large-scale network, the eSDN does not support dynamic SDN controller mapping. Often, the same SDN controller gets overloaded, leading to a single point of failure. Our literature review shows that most proposed solutions are based on static SDN controller deployment without considering flow fluctuations and traffic bursts that lead to a lack of load balancing among the SDN controllers in real-time, eventually increasing the network latency. Therefore, to maintain the Quality of Service (QoS) in the network, it becomes imperative for the static SDN controller to neutralise the on-the-fly traffic burst. Thus, our novel dynamic controller mapping algorithm with multiple-controller placement in the SDN is critical to solving the identified issues. In dSDN, the SDN controllers are mapped dynamically with the load fluctuation. If any SDN controller reaches its maximum threshold, the rest of the traffic will be diverted to another controller, significantly reducing delay and enhancing the overall performance. Our technique considers the latency and load fluctuation in the network and manages the situations where static mapping is ineffective in dealing with the dynamic flow variation.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference40 articles.

1. Software-defined networking for Internet of Things: A survey;Bera;IEEE Internet Things J.,2017

2. Software-defined networking (SDN): A survey;Benzekki;Secur. Commun. Netw.,2016

3. SDN: Evolution and opportunities in the development of IoT applications;Caraguay;Int. J. Distrib. Sens. Netw.,2014

4. Coughlin, M. (2013). A Survey of SDN Security Research, University of Colorado Boulder.

5. A survey on software-defined networking and its applications;Gong;Front. Comput. Sci.,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3