A Temporal Deep Q Learning for Optimal Load Balancing in Software-Defined Networks

Author:

Sharma Aakanksha1ORCID,Balasubramanian Venki2ORCID,Kamruzzaman Joarder2ORCID

Affiliation:

1. Melbourne Institute of Technology (MIT), Melbourne, VIC 3000, Australia

2. Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia

Abstract

With the rapid advancement of the Internet of Things (IoT), there is a global surge in network traffic. Software-Defined Networks (SDNs) provide a holistic network perspective, facilitating software-based traffic analysis, and are more suitable to handle dynamic loads than a traditional network. The standard SDN architecture control plane has been designed for a single controller or multiple distributed controllers; however, a logically centralized single controller faces severe bottleneck issues. Most proposed solutions in the literature are based on the static deployment of multiple controllers without the consideration of flow fluctuations and traffic bursts, which ultimately leads to a lack of load balancing among controllers in real time, resulting in increased network latency. Moreover, some methods addressing dynamic controller mapping in multi-controller SDNs consider load fluctuation and latency but face controller placement problems. Earlier, we proposed priority scheduling and congestion control algorithm (eSDN) and dynamic mapping of controllers for dynamic SDN (dSDN) to address this issue. However, the future growth of IoT is unpredictable and potentially exponential; to accommodate this futuristic trend, we need an intelligent solution to handle the complexity of growing heterogeneous devices and minimize network latency. Therefore, this paper continues our previous research and proposes temporal deep Q learning in the dSDN controller. A Temporal Deep Q learning Network (tDQN) serves as a self-learning reinforcement-based model. The agent in the tDQN learns to improve decision-making for switch-controller mapping through a reward–punish scheme, maximizing the goal of reducing network latency during the iterative learning process. Our approach—tDQN—effectively addresses dynamic flow mapping and latency optimization without increasing the number of optimally placed controllers. A multi-objective optimization problem for flow fluctuation is formulated to divert the traffic to the best-suited controller dynamically. Extensive simulation results with varied network scenarios and traffic show that the tDQN outperforms traditional networks, eSDNs, and dSDNs in terms of throughput, delay, jitter, packet delivery ratio, and packet loss.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3