Dynamic Privacy-Preserving Recommendations on Academic Graph Data

Author:

Purificato ErasmoORCID,Wehnert SabineORCID,De Luca Ernesto WilliamORCID

Abstract

In the age of digital information, where the internet and social networks, as well as personalised systems, have become an integral part of everyone’s life, it is often challenging to be aware of the amount of data produced daily and, unfortunately, of the potential risks caused by the indiscriminate sharing of personal data. Recently, attention to privacy has grown thanks to the introduction of specific regulations such as the European GDPR. In some fields, including recommender systems, this has inevitably led to a decrease in the amount of usable data, and, occasionally, to significant degradation in performance mainly due to information no longer being attributable to specific individuals. In this article, we present a dynamic privacy-preserving approach for recommendations in an academic context. We aim to implement a personalised system capable of protecting personal data while at the same time allowing sensible and meaningful use of the available data. The proposed approach introduces several pseudonymisation procedures based on the design goals described by the European Union Agency for Cybersecurity in their guidelines, in order to dynamically transform entities (e.g., persons) and attributes (e.g., authored papers and research interests) in such a way that any user processing the data are not able to identify individuals. We present a case study using data from researchers of the Georg Eckert Institute for International Textbook Research (Brunswick, Germany). Building a knowledge graph and exploiting a Neo4j database for data management, we first generate several pseudoN-graphs, being graphs with different rates of pseudonymised persons. Then, we evaluate our approach by leveraging the graph embedding algorithm node2vec to produce recommendations through node relatedness. The recommendations provided by the graphs in different privacy-preserving scenarios are compared with those provided by the fully non-pseudonymised graph, considered as the baseline of our evaluation. The experimental results show that, despite the structural modifications to the knowledge graph structure due to the de-identification processes, applying the approach proposed in this article allows for preserving significant performance values in terms of precision.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward a Responsible Fairness Analysis: From Binary to Multiclass and Multigroup Assessment in Graph Neural Network-Based User Modeling Tasks;Minds and Machines;2024-07-17

2. Leveraging Graph Neural Networks for User Profiling: Recent Advances and Open Challenges;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

3. The Significance of Enhancing Data Fairness in Educational Recommender Systems;2023 22nd RoEduNet Conference: Networking in Education and Research (RoEduNet);2023-09-21

4. Tutorial on User Profiling with Graph Neural Networks and Related Beyond-Accuracy Perspectives;Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization;2023-06-18

5. Beyond-Accuracy Perspectives on Graph Neural Network-Based Models for Behavioural User Profiling;Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization;2022-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3