1. Transparent, Scrutable and Explainable User Models for Personalized Recommendation
2. Solon Barocas Moritz Hardt and Arvind Narayanan. 2019. Fairness and Machine Learning. fairmlbook.org. http://www.fairmlbook.org. Solon Barocas Moritz Hardt and Arvind Narayanan. 2019. Fairness and Machine Learning. fairmlbook.org. http://www.fairmlbook.org.
3. Simon Caton and Christian Haas . 2020. Fairness in machine learning: A survey. arXiv preprint arXiv:2010.04053 ( 2020 ). Simon Caton and Christian Haas. 2020. Fairness in machine learning: A survey. arXiv preprint arXiv:2010.04053 (2020).
4. Weijian Chen , Fuli Feng , Qifan Wang , Xiangnan He , Chonggang Song , Guohui Ling , and Yongdong Zhang . 2021. CatGCN: Graph Convolutional Networks with Categorical Node Features . IEEE Transactions on Knowledge and Data Engineering ( 2021 ). Weijian Chen, Fuli Feng, Qifan Wang, Xiangnan He, Chonggang Song, Guohui Ling, and Yongdong Zhang. 2021. CatGCN: Graph Convolutional Networks with Categorical Node Features. IEEE Transactions on Knowledge and Data Engineering (2021).
5. Semi-supervised User Profiling with Heterogeneous Graph Attention Networks