Composite Spatial Manipulation Framework for Redirected Walking

Author:

Alsaeedi NassrORCID,Zündorf Albert

Abstract

In this study, we present a composite spatial manipulation framework for the redirected walking technique. The proposed framework focuses on utilizing two different approaches simultaneously to manipulate the user’s position and orientation in the physical space, aiming to substantially improve their redirection in a confined physical space and reduce the special requirements for the RDW technique. Each approach utilizes different perceptual processes. The first is a discrete spatial manipulation approach that introduces translation and/or rotation gains to the user’s virtual perspective in the immersive virtual environment (IVE) during temporal events such as eyeblinks. The second approach is the continuous spatial manipulation approach, which continuously introduces (with each frame) translation and/or rotation gains below the user’s perception threshold to their virtual perspective in the IVE. Two simulation experiments were conducted to investigate the feasibility of adopting the composite spatial manipulation framework for RDW without considering the user’s walking behavior or the impact of the proposed approach on user performance in the immersive virtual environment. In the second simulation experiment we aimed to investigate the performance of the proposed approach while considering the user’s walking behavior and performance in the IVE. Finally, a user experiment was conducted to validate the proposed framework and its impact on the user’s performance in the IVE. The findings revealed a significant improvement in the redirection performance of the proposed controller when it was compared to the classical RDW controller. Additionally, there was significant improvement in the user’s performance when the composite RDW controller was utilized.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference36 articles.

1. Walking improves your cognitive map in environments that are large-scale and large in extent;Ruddle;ACM Trans. Comput. Interact.,2011

2. Cognitive Demands of Semi-Natural Virtual Locomotion;Marsh;Presence Teleoperators Virtual Environ.,2013

3. The benefits of using a walking interface to navigate virtual environments;Ruddle;ACM Trans. Comput. Interact.,2009

4. Razzaque, S. Redirected Walking. Ph.D. Thesis, 2005.

5. 15 Years of Research on Redirected Walking in Immersive Virtual Environments;Nilsson;IEEE Comput. Graph. Appl.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3