Cognitive Demands of Semi-Natural Virtual Locomotion

Author:

Marsh William E.1,Kelly Jonathan W.1,Dark Veronica J.1,Oliver James H.1

Affiliation:

1. Iowa State University, Virtual Reality Applications Center

Abstract

There is currently no fully natural, general-purpose locomotion interface. Instead, interfaces such as gamepads or treadmills are required to explore large virtual environments (VEs). Furthermore, sensory feedback that would normally be used in real-world movement is often restricted in VR due to constraints such as reduced field of view (FOV). Accommodating these limitations with locomotion interfaces afforded by most virtual reality (VR) systems may induce cognitive demands on the user that are unrelated to the primary task to be performed in the VE. Users of VR systems often have many competing task demands, and additional cognitive demands during locomotion must compete for finite resources. Two studies were previously reported investigating the working memory demands imposed by semi-natural locomotion interfaces (Study 1) and reduced sensory feedback (Study 2). This paper expands on the previously reported results and adds discussion linking the two studies. The results indicated that locomotion with a less natural interface increases spatial working memory demands, and that locomotion with a lower FOV increases general attentional demands. These findings are discussed in terms of their practical implications for selection of locomotion interfaces when designing VEs.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing Cognitive Demands and Detection Thresholds for Redirected Walking in Immersive Forest and Urban Environments;2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2024-03-16

2. Spatial Perception in Virtual Environments;Encyclopedia of Computer Graphics and Games;2024

3. Locomotion in Virtual Reality Video Games;Encyclopedia of Computer Graphics and Games;2024

4. Evaluating 3D User Interaction Techniques on Spatial Working Memory for 3D Scatter Plot Exploration in Immersive Analytics;2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR);2023-10-16

5. LoCoMoTe – a Framework for Classification of Natural Locomotion in VR by Task, Technique and Modality;IEEE Transactions on Visualization and Computer Graphics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3