Self-Adaptive Evolutionary Info Variational Autoencoder

Author:

Emm Toby A.1,Zhang Yu1ORCID

Affiliation:

1. Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK

Abstract

With the advent of increasingly powerful machine learning algorithms and the ability to rapidly obtain accurate aerodynamic performance data, there has been a steady rise in the use of algorithms for automated aerodynamic design optimisation. However, long training times, high-dimensional design spaces and rapid geometry alteration pose barriers to this becoming an efficient and worthwhile process. The variational autoencoder (VAE) is a probabilistic generative model capable of learning a low-dimensional representation of high-dimensional input data. Despite their impressive power, VAEs suffer from several issues, resulting in poor model performance and limiting optimisation capability. Several approaches have been proposed in attempts to fix these issues. This study combines the approaches of loss function modification with evolutionary hyperparameter tuning, introducing a new self-adaptive evolutionary info variational autoencoder (SA-eInfoVAE). The proposed model is validated against previous models on the MNIST handwritten digits dataset, assessing the total model performance. The proposed model is then applied to an aircraft image dataset to assess the applicability and complications involved with complex datasets such as those used for aerodynamic design optimisation. The results obtained on the MNIST dataset show improved inference in conjunction with increased generative and reconstructive performance. This is validated through a thorough comparison against baseline models, including quantitative metrics reconstruction error, loss function calculation and disentanglement percentage. A number of qualitative image plots provide further comparison of the generative and reconstructive performance, as well as the strength of latent encodings. Furthermore, the results on the aircraft image dataset show the proposed model can produce high-quality reconstructions and latent encodings. The analysis suggests, given a high-quality dataset and optimal network structure, the proposed model is capable of outperforming the current VAE models, reducing the training time cost and improving the quality of automated aerodynamic design optimisation.

Publisher

MDPI AG

Reference46 articles.

1. Machine Learning in Aerodynamic Shape Optmisation;Li;Prog. Aeronaut. Sci.,2022

2. Kingma, D.P., and Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv.

3. Rezende, D.J., Mohammed, S., and Wierstra, D. (2014, January 21–26). Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In Proceeding of the 31st International Conference on Machine Learning, Beijing, China.

4. Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Importance Weighted Autoencoders. arXiv.

5. Exploiting 3D variational autoencoders for interactive design;Saha;Proc. Des. Soc.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3