1. Exploiting Linear Interpolation of Variational Autoencoders for Satisfying Preferences in Evolutionary Design Optimization;Saha;IEEE Congress on Evolutionary Computation (CEC),2021a
2. Chang, A.X. , Funkhouser, T. , Guibas, L. , Hanrahan, P. , Huang, Q. , Li, Z. , Savarese, S. , . (2015), ShapeNet: An Information-Rich 3D Model Repository, available at: http://arxiv.org/abs/1512.03012.
3. Ha, D. and Eck, D. (2018), “A Neural Representation of Sketch Drawings”, 6th International Conference on Learning Representations, ICLR. https://arxiv.org/abs/1704.03477.
4. On the Efficiency of a Point Cloud Autoencoder as a Geometric Representation for Shape Optimization;Rios;IEEE Symposium Series on Computational Intelligence (SSCI),2019
5. Achlioptas, P. , Diamanti, O. , Mitliagkas, I. and Guibas, L. (2018), “Learning representations and generative models for 3d point clouds”, International Conference on Machine Learning (ICML), Vol. 80, pp. 40–49. https://arxiv.org/abs/1707.02392.