Predictive Modeling of Student Dropout in MOOCs and Self-Regulated Learning

Author:

Psathas Georgios1,Chatzidaki Theano K.2ORCID,Demetriadis Stavros N.1

Affiliation:

1. School of Informatics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

2. Department of Economics, University of Macedonia, 156 Egnatia Street, 546 36 Thessaloniki, Greece

Abstract

The primary objective of this study is to examine the factors that contribute to the early prediction of Massive Open Online Courses (MOOCs) dropouts in order to identify and support at-risk students. We utilize MOOC data of specific duration, with a guided study pace. The dataset exhibits class imbalance, and we apply oversampling techniques to ensure data balancing and unbiased prediction. We examine the predictive performance of five classic classification machine learning (ML) algorithms under four different oversampling techniques and various evaluation metrics. Additionally, we explore the influence of self-reported self-regulated learning (SRL) data provided by students and various other prominent features of MOOCs as potential indicators of early stage dropout prediction. The research questions focus on (1) the performance of the classic classification ML models using various evaluation metrics before and after different methods of oversampling, (2) which self-reported data may constitute crucial predictors for dropout propensity, and (3) the effect of the SRL factor on the dropout prediction performance. The main conclusions are: (1) prominent predictors, including employment status, frequency of chat tool usage, prior subject-related experiences, gender, education, and willingness to participate, exhibit remarkable efficacy in achieving high to excellent recall performance, particularly when specific combinations of algorithms and oversampling methods are applied, (2) self-reported SRL factor, combined with easily provided/self-reported features, performed well as a predictor in terms of recall when LR and SVM algorithms were employed, (3) it is crucial to test diverse machine learning algorithms and oversampling methods in predictive modeling.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3