Explainable AI-Based DDOS Attack Identification Method for IoT Networks

Author:

Kalutharage Chathuranga Sampath1ORCID,Liu Xiaodong1ORCID,Chrysoulas Christos1ORCID,Pitropakis Nikolaos1ORCID,Papadopoulos Pavlos1ORCID

Affiliation:

1. School of Computing, Engineering & the Build Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK

Abstract

The modern digitized world is mainly dependent on online services. The availability of online systems continues to be seriously challenged by distributed denial of service (DDoS) attacks. The challenge in mitigating attacks is not limited to identifying DDoS attacks when they happen, but also identifying the streams of attacks. However, existing attack detection methods cannot accurately and efficiently detect DDoS attacks. To this end, we propose an explainable artificial intelligence (XAI)-based novel method to identify DDoS attacks. This method detects abnormal behaviours of network traffic flows by analysing the traffic at the network layer. Moreover, it chooses the most influential features for each anomalous instance with influence weight and then sets a threshold value for each feature. Hence, this DDoS attack detection method defines security policies based on each feature threshold value for application-layer-based, volumetric-based, and transport control protocol (TCP) state-exhaustion-based features. Since the proposed method is based on layer three traffic, it can identify DDoS attacks on both Internet of Things (IoT) and traditional networks. Extensive experiments were performed on the University of Sannio, Benevento Instrution Detection System (USB-IDS) dataset, which consists of different types of DDoS attacks to test the performance of the proposed solution. The results of the comparison show that the proposed method provides greater detection accuracy and attack certainty than the state-of-the-art methods.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference39 articles.

1. All-Packets-Based Multi-Rate DDoS Attack Detection Method in ISP Layer;Liu;Secur. Commun. Netw.,2022

2. Empirical Analysis of Web Attacks;Kaur;Procedia Comput. Sci.,2016

3. (2019). Network Security Infrastructure Report: NETSCOUT, NETSCOUT.

4. Generation of DDoS attack dataset for effective IDS development and evaluation;Alzahrani;J. Inf. Secur.,2018

5. Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J., Durumeric, Z., Halderman, J.A., Invernizzi, L., and Kallitsis, M. (2017, January 16–18). Understanding the mirai botnet. Proceedings of the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3