Metabolomic Profile of BALB/c Macrophages Infected with Leishmania amazonensis: Deciphering L-Arginine Metabolism

Author:

Muxel Sandra MarciaORCID,Mamani-Huanca Maricruz,Aoki Juliana Ide,Zampieri Ricardo Andrade,Floeter-Winter Lucile Maria,López-Gonzálvez ÁngelesORCID,Barbas CoralORCID

Abstract

Background: Leishmaniases are neglected tropical diseases that are caused by Leishmania, being endemic worldwide. L-arginine is an essential amino acid that is required for polyamines production on mammal cells. During Leishmania infection of macrophages, L-arginine is used by host and parasite arginase to produce polyamines, leading to parasite survival; or, by nitric oxide synthase 2 to produce nitric oxide leading to parasite killing. Here, we determined the metabolomic profile of BALB/c macrophages that were infected with L. amazonensis wild type or with L. amazonensis arginase knockout, correlating the regulation of L-arginine metabolism from both host and parasite. Methods: The metabolites of infected macrophages were analyzed by capillary electrophoresis coupled with mass spectrometry (CE-MS). The metabolic fingerprints analysis provided the dual profile from the host and parasite. Results: We observed increased levels of proline, glutamic acid, glutamine, L-arginine, ornithine, and putrescine in infected-L. amazonensis wild type macrophages, which indicated that this infection induces the polyamine production. Despite this, we observed reduced levels of ornithine, proline, and trypanothione in infected-L. amazonensis arginase knockout macrophages, indicating that this infection reduces the polyamine production. Conclusions: The metabolome fingerprint indicated that Leishmania infection alters the L-arginine/polyamines/trypanothione metabolism inside the host cell and the parasite arginase impacts on L-arginine metabolism and polyamine production, defining the infection fate.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3