Identification of Differentially Expressed Genes Involved in the Molecular Mechanism of Pericarp Elongation and Differences in Sucrose and Starch Accumulation between Vegetable and Grain Pea (Pisum sativum L.)

Author:

Yang PuORCID,Li Zhonghao,Wu Caoyang,Luo Yan,Li Jing,Wang Pengke,Gao Xiaoli,Gao Jinfeng,Feng BailiORCID

Abstract

Pea (Pisum sativum L.), as a major source of plant protein, is becoming one of the major cultivated crop species worldwide. In pea, the pericarp is an important determinant of the morphological characteristics and seed yield. To investigate the molecular mechanism of pericarp elongation as well as sucrose and starch accumulation in the pods of different pea cultivars, we performed transcriptomic analysis of the pericarp of two types of pea cultivar (vegetable pea and grain pea) using RNA-seq. A total of 239.44 Gb of clean sequence data were generated, and were aligned to the reference genome of Pisum sativum L. In the two samples, 1935 differentially expressed genes (DEGs) were identified. Among these DEGs, three antioxidant enzyme superoxide dismutase (SOD) were detected to have higher expression levels in the grain pea pericarps at the pod-elongating stages. Otherwise, five peroxidase (POD)-encoding genes were detected to have lower expression levels in the vegetative pericarps at the development stage of pea pod growth. Furthermore, genes related to starch and sucrose metabolism in the pea pod, such as SUS, INV, FBA, TPI, ADPase, SBE, SSS, and GBSS, were found to be differentially expressed. The RNA-seq data were validated through real-time quantitative RT-PCR of 13 randomly selected genes. Our findings provide the gene expression profile of, as well as differential expression information on, the two pea cultivars, which will lay the foundation for further studies on pod development and nutrition accumulation in the pea and provide valuable information for pea cultivar improvement.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3