Author:
Zhao Shuping,Ruan Fujie,Shen Wangjun,Deng Kangming,Jiang Tao,Wu Peng,Feng Kai,Li Liangjun
Abstract
Optimal nitrogen (N) supply significantly increases the starch content, components, and yield of Nelumbo nucifera. However, the underlying transcriptional mechanism and starch accumulation under dose-dependent nitrogen fertilizer are poorly understood. In this study, we found that the optimal nitrogen fertilizer (N2, 30 kg/667 m2) was more beneficial to improve the stomatal conductance (Gs), leaf intercellular CO2 concentration (Ci), transpiration rate (Tr), net photosynthetic rates (Pn), chlorophyll content, starch content, and plot yield. What is more, N2-fertilizer treatment induced a higher number of starch granule, AP2 content, and RVA curve peaks. Then, the transcriptomic analyses performed in control (CK) and N2-fertilizer treatment (N2) showed that the expressions of many differentially expressed genes (DEGs) were significantly induced by N2. KEGG and GO enrichment analysis showed that these DEGs were significantly enriched in biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, carbon metabolism, carbon fixation in photosynthetic organisms, plant hormone signal transduction, and starch and sucrose metabolisms, suggesting that nitrogen fertilizer induced alterations of photosynthesis- and starch accumulation-related gene expression profiles. Finally, six photosynthesis-related genes and fourteen starch synthesis-related genes were confirmed to be required for starch accumulation in the Nelumbo nucifera development. qPCR analysis of six starch accumulation-related genes demonstrated the accuracy of the transcriptome. Hence, our study provides valuable resource for future studies on molecular mechanisms underlying starch accumulation in Nelumbo nucifera rhizome under N-fertilizer treatment.
Funder
the China Agriculture ResearchSystem
Subject
Agronomy and Crop Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献