Practicality and Robustness of Tree Species Identification Using UAV RGB Image and Deep Learning in Temperate Forest in Japan

Author:

Onishi Masanori,Watanabe Shuntaro,Nakashima Tadashi,Ise TakeshiORCID

Abstract

Identifying tree species from the air has long been desired for forest management. Recently, combination of UAV RGB image and deep learning has shown high performance for tree identification in limited conditions. In this study, we evaluated the practicality and robustness of the tree identification system using UAVs and deep learning. We sampled training and test data from three sites in temperate forests in Japan. The objective tree species ranged across 56 species, including dead trees and gaps. When we evaluated the model performance on the dataset obtained from the same time and same tree crowns as the training dataset, it yielded a Kappa score of 0.97, and 0.72, respectively, for the performance on the dataset obtained from the same time but with different tree crowns. When we evaluated the dataset obtained from different times and sites from the training dataset, which is the same condition as the practical one, the Kappa scores decreased to 0.47. Though coniferous trees and representative species of stands showed a certain stable performance regarding identification, some misclassifications occurred between: (1) trees that belong to phylogenetically close species, (2) tree species with similar leaf shapes, and (3) tree species that prefer the same environment. Furthermore, tree types such as coniferous and broadleaved or evergreen and deciduous do not always guarantee common features between the different trees belonging to the tree type. Our findings promote the practicalization of identification systems using UAV RGB images and deep learning.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3