Comparison of Algorithms and Optimal Feature Combinations for Identifying Forest Type in Subtropical Forests Using GF-2 and UAV Multispectral Images

Author:

He Guowei1ORCID,Li Shun2,Huang Chao1ORCID,Xu Shi3,Li Yang1,Jiang Zijun1,Xu Jiashuang1,Yang Funian1,Wan Wei3,Zou Qin3,Zhang Mi3,Feng Yan3,He Guoqing4

Affiliation:

1. Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China

2. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China

3. Lushan National Nature Reserve Administration, Jiujiang 332000, China

4. School of Ocean and Earth Science, Tongji University, Shanghai 200092, China

Abstract

The composition and spatial distribution of tree species are pivotal for biodiversity conservation, ecosystem productivity, and carbon sequestration. However, the accurate classification of tree species in subtropical forests remains a formidable challenge due to their complex canopy structures and dense vegetation. This study addresses these challenges within the Jiangxi Lushan National Nature Reserve by leveraging high-resolution GF-2 remote sensing imagery and UAV multispectral images collected in 2018 and 2022. We extracted spectral, texture, vegetation indices, geometric, and topographic features to devise 12 classification schemes. Utilizing an object-oriented approach, we employed three machine learning algorithms—Random Forest (RF), k-Nearest Neighbor (KNN), and Classification and Regression Tree (CART)—to identify 12 forest types in these regions. Our findings indicate that all three algorithms were effective in identifying forest type in subtropical forests, and the optimal overall accuracy (OA) was more than 72%; RF outperformed KNN and CART; S12 based on feature selection was the optimal feature combination scheme; and the combination of RF and Scheme S12 (S12) yielded the highest classification accuracy, with OA and Kappa coefficients for 2018-RF-S12 of 90.33% and 0.82 and OA and Kappa coefficients for 2022-RF-S12 of 89.59% and 0.81. This study underscores the utility of combining multiple feature types and feature selection for enhanced forest type recognition, noting that topographic features significantly improved accuracy, whereas geometric features detracted from it. Altitude emerged as the most influential characteristic, alongside significant variables such as the Normalized Difference Greenness Index (NDVI) and the mean value of reflectance in the blue band of the GF-2 image (Mean_B). Species such as Masson pine, shrub, and moso bamboo were accurately classified, with the optimal F1-Scores surpassing 89.50%. Notably, a shift from single-species to mixed-species stands was observed over the study period, enhancing ecological diversity and stability. These results highlight the effectiveness of GF-2 imagery for refined, large-scale forest-type identification and dynamic diversity monitoring in complex subtropical forests.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3