Abstract
Satellite retrieval and land surface models have become the mainstream methods for monitoring soil moisture (SM) over large regions; however, the uncertainty and coarse spatial resolution of these products limit their applications at the regional and local scales. We proposed a hybrid approach combining the triple collocation (TC) and the long short-term memory (LSTM) network, which was designed to generate a high-quality SM dataset from satellite and modeled data. We applied the proposed approach to merge SM data from Soil Moisture Active Passive (SMAP), Global Land Data Assimilation System-Noah (GLDAS-Noah), and the land component of the fifth generation of European Reanalysis (ERA5-Land), and we then downscaled the merged SM data from 0.36° to 0.01° resolution based on the relationship between the SM data and auxiliary environmental variables (elevation, land surface temperature, vegetation index, surface albedo, and soil texture). The merged and downscaled SM results were validated against in situ observations. The results showed that: (1) the TC-based validation results were consistent with the in situ-based validation, indicating that the TC method was reasonable for the comparison and evaluation of satellite and modeled SM data. (2) TC-based merging was superior to simple arithmetic average merging when the parent products had large differences. (3) Downscaled SM of the TC-based merged product had better performance than that of the parent products in terms of ubRMSE and bias values, implying that the fusion of satellite and model-based SM data would result in better downscaling accuracy. (4) Downscaled SM of TC-based merged data not only improved the representation of the SM spatial variability but also had satisfactory accuracy with a median of R (0.7244), ubRMSE (0.0459 m3/m3), and bias (−0.0126 m3/m3). The proposed approach was effective for generating a SM dataset with fine resolution and reliable accuracy for wide hydrometeorological applications.
Subject
General Earth and Planetary Sciences
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献