Abstract
Aerosol extinction profiles at 550 nm were retrieved by applying multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lookup table. Then the tropospheric NO2 and HCHO vertical column densities were retrieved using a two-step method from 28 July to 5 August of 2015 in Shanghai. The retrieved results were compared with the satellite products, and then their diurnal variation was observed. A consistency check was performed before the inversion to obtain a correction factor. Based on the sensitivity of geometric angles to oxygen dimer air mass factor (O4 AMF, AMF is the ratio of the slanted column density to the vertical column density), the parameterization scheme of geometric angles in the lookup table is optimized. The results show that the aerosol increased significantly in the afternoon. The diurnal variation of tropospheric NO2 and HCHO vertical column densities (VCDs) are bimodal and unimodal patterns respectively, and their values are higher than those of GOME-2 and OMI satellite products. A process of aerosol reduction and recovery are related to ground particulates and meteorological elements. The chemical sensitivity of local ozone production also has a clear diurnal variation.
Funder
Second Tibetan Plateau Scientific Expedition and Research Program
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献