Author:
Jie Lu,Jin Zhi,Wang Jinping,Zhang Letian,Tan Xiaojun
Abstract
Simultaneous localization and mapping (SLAM) is essential for intelligent robots operating in unknown environments. However, existing algorithms are typically developed for specific types of solid-state LiDARs, leading to weak feature representation abilities for new sensors. Moreover, LiDAR-based SLAM methods are limited by distortions caused by LiDAR ego motion. To address the above issues, this paper presents a versatile and velocity-aware LiDAR-based odometry and mapping (VLOM) system. A spherical projection-based feature extraction module is utilized to process the raw point cloud generated by various LiDARs, hence avoiding the time-consuming adaptation of various irregular scan patterns. The extracted features are grouped into higher-level clusters to filter out smaller objects and reduce false matching during feature association. Furthermore, bundle adjustment is adopted to jointly estimate the poses and velocities for multiple scans, effectively improving the velocity estimation accuracy and compensating for point cloud distortions. Experiments on publicly available datasets demonstrate the superiority of VLOM over other state-of-the-art LiDAR-based SLAM systems in terms of accuracy and robustness. Additionally, the satisfactory performance of VLOM on RS-LiDAR-M1, a newly released solid-state LiDAR, shows its applicability to a wide range of LiDARs.
Funder
Key-Area Research and Development Program of Guangdong Province
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献