A SLAM System with Direct Velocity Estimation for Mechanical and Solid-State LiDARs

Author:

Jie Lu,Jin Zhi,Wang Jinping,Zhang Letian,Tan Xiaojun

Abstract

Simultaneous localization and mapping (SLAM) is essential for intelligent robots operating in unknown environments. However, existing algorithms are typically developed for specific types of solid-state LiDARs, leading to weak feature representation abilities for new sensors. Moreover, LiDAR-based SLAM methods are limited by distortions caused by LiDAR ego motion. To address the above issues, this paper presents a versatile and velocity-aware LiDAR-based odometry and mapping (VLOM) system. A spherical projection-based feature extraction module is utilized to process the raw point cloud generated by various LiDARs, hence avoiding the time-consuming adaptation of various irregular scan patterns. The extracted features are grouped into higher-level clusters to filter out smaller objects and reduce false matching during feature association. Furthermore, bundle adjustment is adopted to jointly estimate the poses and velocities for multiple scans, effectively improving the velocity estimation accuracy and compensating for point cloud distortions. Experiments on publicly available datasets demonstrate the superiority of VLOM over other state-of-the-art LiDAR-based SLAM systems in terms of accuracy and robustness. Additionally, the satisfactory performance of VLOM on RS-LiDAR-M1, a newly released solid-state LiDAR, shows its applicability to a wide range of LiDARs.

Funder

Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Lightweight Visual Odometry Based on LK Optical Flow Tracking;Applied Sciences;2023-10-15

2. Semi-Supervised Domain Adaptation on LiDAR 3D Object Detection with Self-Training and Knowledge Distillation;Journal of Korea Robotics Society;2023-09-01

3. LMBAO: A Landmark Map for Bundle Adjustment Odometry in LiDAR SLAM;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

4. Map building using helmet-mounted LiDAR for micro-mobility;Artificial Life and Robotics;2023-01-10

5. Improved LiDAR Localization Method for Mobile Robots Based on Multi-Sensing;Remote Sensing;2022-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3