Implementation of Artificial Intelligence for Classification of Frogs in Bioacoustics

Author:

Chao Kuo-Wei,Hu Nian-Ze,Chao Yi-Chu,Su Chin-Kai,Chiu Wei-Hang

Abstract

This research presents the implementation of artificial intelligence (AI) for classification of frogs in symmetry of the bioacoustics spectral by using the feedforward neural network approach (FNNA) and support vector machine (SVM). Recently, the symmetry concept has been applied in physics, and in mathematics to help make mathematical models tractable to achieve the best learning performance. Owing to the symmetry of the bioacoustics spectral, feature extraction can be achieved by integrating the techniques of Mel-scale frequency cepstral coefficient (MFCC) and mentioned machine learning algorithms, such as SVM, neural network, and so on. At the beginning, the raw data information for our experiment is taken from a website which collects many kinds of frog sounds. This in fact saves us collecting the raw data by using a digital signal processing technique. The generally proposed system detects bioacoustic features by using the microphone sensor to record the sounds of different frogs. The data acquisition system uses an embedded controller and a dynamic signal module for making high-accuracy measurements. With regard to bioacoustic features, they are filtered through the MFCC algorithm. As the filtering process is finished, all values from ceptrum signals are collected to form the datasets. For classification and identification of frogs, we adopt the multi-layer FNNA algorithm in machine learning and the results are compared with those obtained by the SVM method at the same time. Additionally, two optimizer functions in neural network include: scaled conjugate gradient (SCG) and gradient descent adaptive learning rate (GDA). Both optimization methods are used to evaluate the classification results from the feature datasets in model training. Also, calculation results from the general central processing unit (CPU) and Nvidia graphics processing unit (GPU) processors are evaluated and discussed. The effectiveness of the experimental system on the filtered feature datasets is classified by using the FNNA and the SVM scheme. The expected experimental results of the identification with respect to different symmetry bioacoustic features of fifteen frogs are obtained and finally distinguished.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3