Communication among animals and bioacoustics studies on bees.

Author:

ANNA TOMAŃSKA,PAWEŁ CHORBIŃSKI,MAŁGORZATA KLIMOWICZ-BODYS,PHILIP MILL

Abstract

The communication of honey bees encompasses diverse forms, focusing on signals that resemble those in the learning process. Bioacoustics plays a crucial role in understanding this phenomenon, especially in the context of social insects, where communicative coding is complex and essential for survival. In this article, various aspects of bee communication are analyzed, examining both acoustics and other forms of information transmission. In the bee family, there are several communication mechanisms, such as the dance of bees, vibrations, buzzing, and singing. The dance communication of honey bees, based on dance movements, dates back as far as 40 million years, making it older than human language. This form of communication is linked to environmental needs and determines the survival of bees. Signals from queen bees are associated with reproductive needs within the colony, and other individuals exhibit diverse sound characteristics. Different species of bees utilize various aspects of the environment for communication, including gravity and the position of the sun. The precision of transmitted signals may depend on the distance to a food source or potential threat. Sounds emitted by bees serve diverse functions, such as deterring predators or recruiting other individuals for food collection. Modern technologies, especially bioacoustics, enable more precise studies of bee communication. Advanced methods of vibrational spectrum analysis even allow the prediction of swarming with high effectiveness, which can be particularly useful in beekeeping practices. Studies on the bioacoustic hive, utilizing stereo microphones and soundproofing, indicate the potential of these technologies for a better understanding of bee communication in natural conditions. However, many aspects of bee communication still require more detailed research, such as the role of honey-filled cells in transmitting vibrations, necessitating the use of precise tools and technologies. The bioacoustic hive project, based on traditional bee frames, provides new insights into bee communication, especially concerning sounds generated during bee collisions within the hive. Conclusions from bioacoustic studies have significant practical potential in apiculture. The use of stereo microphones and soundproofing improves the perception and assessment of acoustic phenomena within the hive. Prospects for utilizing sound recorders for continuous monitoring of life inside the hive, and the assessment of zoo-hygienic conditions, underscore the growing importance of bioacoustics in beekeeping practices. These discoveries open new perspectives for research into the social life of these crucial insect species and their conservation.

Publisher

Medycyna Weterynaryjna - Redakcja

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3