Abstract
Many optimal order multiple root techniques involving derivatives have been proposed in literature. On the contrary, optimal order multiple root techniques without derivatives are almost nonexistent. With this as a motivational factor, here we develop a family of optimal fourth-order derivative-free iterative schemes for computing multiple roots. The procedure is based on two steps of which the first is Traub–Steffensen iteration and second is Traub–Steffensen-like iteration. Theoretical results proved for particular cases of the family are symmetric to each other. This feature leads us to prove the general result that shows the fourth-order convergence. Efficacy is demonstrated on different test problems that verifies the efficient convergent nature of the new methods. Moreover, the comparison of performance has proven the presented derivative-free techniques as good competitors to the existing optimal fourth-order methods that use derivatives.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献