Performance Evaluation of Automobile Fuel Consumption Using a Fuzzy-Based Granular Model with Coverage and Specificity

Author:

Yeom Chan-Uk,Kwak Keun-ChangORCID

Abstract

The predictive performance of different granular models (GMs) was compared and analyzed for methods that evenly divide linguistic context in information granulation-based GMs and perform flexible partitioning. GMs are defined by input and output space information transformations using context-based fuzzy C-means clustering. The input space information transformation is directly induced by the output space context. Usually, the output space context is evenly divided. In this paper, the linguistic context was flexibly divided by stochastically distributing data in the output space. Unlike most fuzzy models, this GM yielded information segmentation. Their performance is usually evaluated using the root mean square error, which utilizes the difference between the model’s output and ground truth. However, this is inadequate for the performance evaluation of information innovation-based GMs. Thus, the GM performance was compared and analyzed using the linguistic context partitioning by selecting the appropriate performance evaluation method for the GM. The method was augmented by the coverage and specificity of the GMs output as the performance index. For the GM validation, its performance was compared and analyzed using the auto MPG dataset. The GM with flexible partitioning of linguistic context performed better. Performance evaluation using the coverage and specificity of the membership function was validated.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-fidelity cost-aware Bayesian optimization;Computer Methods in Applied Mechanics and Engineering;2023-03

2. Composition of Fuzzy Numbers with Chaotic Maps;Nonlinear Systems and Complexity;2022

3. Latent map Gaussian processes for mixed variable metamodeling;Computer Methods in Applied Mechanics and Engineering;2021-12

4. ICONet: A Lightweight Network with Greater Environmental Adaptivity;Symmetry;2020-12-21

5. Optimization by Context Refinement for Development of Incremental Granular Models;Symmetry;2020-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3