Optimization by Context Refinement for Development of Incremental Granular Models

Author:

Lee Myung-Won,Kwak Keun-ChangORCID

Abstract

Optimization by refinement of linguistic contexts produced from an output variable in the construction of an incremental granular model (IGM) is presented herein. In contrast to the conventional learning method using the backpropagation algorithm, we use a novel method to learn both the cluster centers of Gaussian fuzzy sets representing the symmetry in the premise part and the contexts of the consequent part in the if–then fuzzy rules. Hence, we use the fundamental concept of context-based fuzzy clustering and design with an integration of linear regression (LR) and granular fuzzy models (GFMs). This GFM is constructed based on the association between the triangular membership function produced both in the input–output variables. The context can be established by the system user or using an optimization method. Hence, we can obtain superior performances based on the combination of simple linear regression and local GFMs optimized by context refinement. Experimental results pertaining to coagulant dosing in a water purification plant and automobile miles per gallon prediction revealed that the presented method performed better than linear regression, multilinear perceptron, radial basis function networks, linguistic model, and the IGM.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3